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Oscillatory flow of droplets in capillary tubes.
Part 1. Straight tubes

By D. R. G R A H A M AND J. J. L. H I G D O N
Department of Chemical Engineering, University of Illinois, Urbana, IL 61801, USA

(Received 25 June 1999 and in revised form 29 June 2000)

The motion of fluid droplets in capillary tubes subject to the action of a mean pressure
gradient and an oscillatory body force is studied via numerical computations. The
effects of the oscillatory forcing on the bulk flow rate and on the droplet velocity are
evaluated, and results are presented for a range of forcing conditions, fluid properties
and drop sizes. For large droplets (whose undeformed diameter exceeds that of the
capillary tube), significant enhancement in the bulk flow rate is observed when the
drop capillary number is small and the oscillatory forcing is strong. The enhancement
is associated with increased droplet deformation in the presence of oscillatory forcing.
The dependence of the flow enhancement on the amplitude, frequency and waveform
of the oscillatory body force is evaluated for a range of fluid properties.

1. Introduction
Multiphase flow of viscous fluids through porous media is a problem of fundamental

importance in the petrochemical industry, with specific application to oil recovery. To
model multiphase flow, many studies have considered the flow of droplets through
capillary tubes with both straight and constricted geometries. The efficacy of using
these models for flow through porous media, as well as studies which detail their
flow behaviour have been reviewed by Olbricht (1996). Recently, we have become
interested in the unsteady motion of droplets that arises for oscillatory forcing. Our
motivation is the enhanced efficiency of secondary oil recovery operations that may
occur when strong acoustic stimulation is added to a reservoir.

Secondary oil recovery is a process in which water is injected into a reservoir
through a network of supply wells in an attempt to force the oil out of a central
production well. Both field tests and laboratory experiments have demonstrated that
strong acoustic stimulation delivered to an oil reservoir may enhance the efficiency of
secondary oil recovery by increasing the production of oil and reducing the volume
fraction of water in the product stream (Beresnev & Johnson 1994). While the results
of these tests are intriguing, there has been no rigorous physical explanation for the
enhanced oil recovery associated with acoustic stimulation.

To examine the fundamental physical processes relevant to acoustic stimulation of
porous media, we assume that the porous medium is a porous elastic solid into which
a travelling acoustic wave is introduced by an external stimulus. The propagation of
acoustic waves in fluid-saturated porous media has been the subject of much study
in the literature dating from the early work of Biot (1956a, b). Chapman & Higdon
(1992, 1994) present a review of recent work covering the theory for the dynamics
of both the fluid and the solid phases. For acoustic wavelengths which are large
compared to the characteristic pore size, the coupling of the fluid dynamics and the
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solid mechanics is significantly simplified. The long distance wave propagation occurs
primarily through the elastic deformation in the solid phase, while the fluid motion
acts as a relatively short-range damping force. The acoustic wave induces a large-
scale motion of the solid phase which provides an accelerating reference frame for the
microscopic fluid motion. For the fluid motion on the microscopic scale, the governing
equations reduce to those for an incompressible fluid flowing through a rigid porous
medium with an oscillatory body force accounting for the action of the accelerating
reference frame. With this background, we infer that the effects of acoustic stimulation
on porous media may be studied by considering pore-scale fluid flows subject to the
simultaneous action of a mean pressure gradient and an oscillatory body force.

In a recent study, we described some of the fundamental physical processes relevant
to this phenomenon by focusing on regions of the porous medium where oil and water
flow independently (Graham 1997). We conducted an investigation of the effects of
acoustic stimulation on single-phase flow. We showed that the inertial forces resulting
from acoustic stimulation may decrease the water flow rate and leave the flow of
oil unimpeded. The goal of the present paper is to extend our previous single-phase
flow investigation to determine how interfacial effects influence acoustic stimulation
of multiphase flows.

Early theoretical work on the flow of drops in capillary tubes was conducted by
Bretherton (1961). In this work, Bretherton used lubrication analysis to determine the
scaling for the pressure drop ∆P across the droplet with capillary number Ca and
showed that

∆P s Ca2/3. (1.1)

This scaling was later shown to be valid for droplets with viscosity ratio up to
O(Ca−1/3) (Park & Homsy 1984). On the experimental side, Ho & Leal (1975)
conducted a series of experiments to study droplet motion in capillaries over a wide
range of conditions. These authors showed that the extra pressure drop due to the
droplet (∆P+) can be positive or negative, depending on a complex interplay between
viscosity ratio λ and surface tension. Drops with λ > 1 have a positive ∆P+, but
droplets with λ < 1 can have either a positive or a negative ∆P+. For the λ < 1 case,
factors that lead to a positive ∆P+ are a decrease in either the capillary number or
in the drop size.

To complement the above experimental and theoretical studies, a computational
study of droplet flow was conducted by Martinez & Udell (1990). These authors
used a boundary integral formulation to analyse the Stokes flow behaviour for a
wide variety of drop sizes, viscosity ratios and capillary numbers. Furthermore, they
verified many of the findings of Ho & Leal, and determined that the drop shape and
speed become size independent once the drop radius exceeds a critical value.

In addition to the work on pressure-driven motion of droplets, several researchers
have examined the motion of droplets due to the action of buoyancy forces. Pozrikidis
(1992) presents numerical computations for the buoyancy-driven flow of a train of
viscous droplets under Stokes flow conditions. Detailed droplet shapes are presented,
along with a discussion of the effects of Bond number on the terminal velocity of the
droplets. The combined effects of pressure gradients and buoyancy forces were studied
by Borhan & Pallinti (1998). The buoyancy force was found to increase the velocity
of the droplet relative to the bulk fluid and to modify the drop shapes slightly. While
the above studies examined low Reynolds number flow, a recent paper by Bozzi et
al. (1997) presents results for moderate Reynolds numbers. These authors focused on
small drops and documented the changes in drag coefficient due to inertial effects.
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Figure 1. Schematic of capillary tube.

While extensive work has been devoted to steady-state drop flow through capillary
tubes and other geometries, unsteady flow has received less attention. One exception
is the work of Coulliette & Pozrikidis (1998), who examined the non-axisymmetric
motion of drops displaced from the centreline of the tube. There has been a large body
of research devoted to unsteady droplet behaviour; however, this work has focused
on droplet motion in an unbounded fluid. Examples include the early theoretical
analyses of Miller & Scriven (1968) and Tsamopolous & Brown (1983) and the more
recent computational work of Basaran (1992).

In the current effort, we study oscillatory droplet motion in confined domains
representative of porous media. Here we consider flow in straight capillary tubes; in
Part 2 (Graham & Higdon 2000) we consider flow in constricted tubes. We analyse
the effects of acoustic stimulation on the droplet motion, calculating the flow rates
of both the droplet and suspending phase over a wide range of conditions. Our goal
is to determine how the application of acoustic stimulation enhances the mean flow
rate compared to a base flow driven solely by a mean pressure gradient.

2. Problem formulation
2.1. Governing equations

We consider the flow of a periodic suspension of fluid droplets (period L) in a straight
capillary tube (radius h) as show in figure 1. The size of the drops is characterized by
the volume V or the equivalent radius a, where V = 4

3
πa3. The governing equations

for the flow of a constant-property Newtonian fluid are the Navier–Stokes equations
and the continuity equation

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ · σ + b, (2.1)

∇ · u = 0, (2.2)

where σ is the stress tensor

σij = −Pδij + µ

(
∂ui

∂xj
+
∂uj

∂xi

)
(2.3)

and b is a body force. In this paper, we consider flow driven by the combined action of
a mean pressure gradient and an oscillatory body force. The mean pressure gradient
can be absorbed into a constant body force Go, and the total body force becomes

bz = Go + Grmsg(t) (2.4)

in which g(t) is a periodic function with unit root-mean-square amplitude and period
τ. For an acoustic wave, the equivalent oscillatory body force is proportional to the
fluid density, and therefore the force on the droplet may be different from the force
on the suspending fluid.
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We assume that the continuous phase has viscosity µ and density ρ, while the
droplet has viscosity λµ and density ρDρ. Because of the difference in fluid properties,
a separate system of governing equations is written for each phase. These two systems
are coupled due to the boundary conditions on the surface of the drop. We impose
the traction boundary condition representing the jump in stress at the interface

(σ · n)12 = (γ∇ · n)n, (2.5)

where γ is the surface tension and n is the normal vector. Also, we employ the
kinematic condition

u · n =
dx

dt
· n (2.6)

to determine the position of the interface.
At the centre of the tube we impose the symmetry conditions,

ur = 0, ez · (σ · n) = 0, (2.7)

where ez is a unit vector in the z-direction. On the surface of the tube walls the no-slip
condition is imposed,

u = 0. (2.8)

At the inlet and the outlet of the tube we impose periodic boundary conditions,

u (r, z) = u (r, z + L) (2.9)

and

P (r, z) = P (r, z + L) . (2.10)

Here, the pressure is periodic because the mean gradient has been absorbed into the
body force.

2.2. Non-dimensional parameters

Having defined the physical problem to be solved, we turn our attention to the
parameters which characterize the flow. Both the steady and oscillatory components
of the body force are non-dimensionalized with respect to the tube radius and surface
tension, hence

Fo = Goh
2/γ, (2.11)

Frms = Grmsh
2/γ. (2.12)

The frequency of forcing is characterized by the period τ and a non-dimensional
frequency may be defined by scaling τ with the viscous response time of the droplet:

f =
aµ

τγ
. (2.13)

The parameters above serve to specify the applied driving forces, while the remaining
parameters characterize the fluid properties. The viscosity ratio λ and the density ratio
ρD have been defined previously. The drop-phase volume fraction is defined by

φ =
V

Lπh2
. (2.14)

The final parameter is the material property number based on the fluid properties
ρ, µ, γ and the capillary size h. This parameter is equal to the ratio of the Reynolds
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number to the capillary number

Re

Ca
=
ρhγ

µ2
. (2.15)

We specify the parameters given above and solve for the velocity field and the
droplet shape. Several quantities are useful to characterize the magnitude of the flow
rate in the capillary. For steady flow, we define the bulk fluid velocity as

Uss =
1

πh2

∫ h

0

u · n 2πr dr, (2.16)

and non-dimensionalize by defining a capillary number

Ca =
Ussµ

γ
. (2.17)

An alternative measure of the bulk flow rate is the dimensionless permeability

κ =
µUss

Goh2
. (2.18)

The most useful parameter characterizing the flow resistance of the droplets is the
extra pressure drop ∆P+

∆P+ = ∆P tot − ∆Ppara. (2.19)

Here, the total pressure drop ∆P tot is given in terms of the the mean gradient by
∆P tot = G◦L, and ∆Ppara is the equivalent pressure drop for a single-phase flow at the
same bulk flow rate, i.e.

∆Ppara =
8µUssL

h2
. (2.20)

For unsteady flow, the bulk fluid velocity varies with time according to

U(t) =
1

πh2

∫ h

0

u(t) · n 2πr dr, (2.21)

and the meaningful flow parameter is the long time average defined by

Ubulk = lim
t2→∞

1

t2 − t1
∫ t2

t1

U(t) dt. (2.22)

For the oscillatory forcing studied in this paper, the quantity which best characterizes
the enhanced transport rates is the ratio of the bulk velocity with oscillatory forcing
to the bulk velocity in the absence of oscillatory forcing. We define the velocity
enhancement factor

UE =
Ubulk

Uss

, (2.23)

where the subscript E indicates that this quantity reflects the enhancement in flow
rate. To quantify the speed of the droplet we employ the ratio of drop speed to bulk
velocity Udrop/Ubulk , where Udrop is defined as the average speed of the drop centroid.

To end this section, it may be helpful to note typical values of the system parameters
for acoustic stimulation in oil reservoirs. For a typical reservoir, a characteristic veloc-
ity is 3.5×10−4 cm s−1 (1 foot/day). With a characteristic permeability of 10−8 cm2 and
viscosity of 0.1 g cm−1 s−1, this requires a pressure gradient of 3.5×103 g cm−2 s−2. For
a surface tension of 40 dyn cm−1 (appropriate for oil–water systems), the steady-state
capillary number in the reservoir would be of order 10−6. For acoustic stimulation, the
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Figure 2. Typical finite element mesh.

amplitude of the oscillatory force is given by Go = 4π2ρd/τ2, where d is the displace-
ment of the acoustic wave. With displacements of 20 µm at a frequency of 500 Hz,
the oscillatory force is 2× 104 g cm−2 s−2. Therefore, conditions of special interest for
acoustic stimulation of porous media are low-Ca flows where the oscillatory force is
larger than the mean pressure gradient.

3. Numerical methods
The governing equations are solved via the Galerkin finite element method. This

method requires the development of a computational grid, the formation of the
residual equations and the solution of these equations.

3.1. Grid generation

The development of a computational grid consists of mapping the physical domain
(r, z) to a simplified domain (ξ, η). The development of this mapping is especially
challenging for free-surface problems because the position of the interface is unknown
a priori. The mesh generation scheme must efficiently track the interface and main-
tain accuracy throughout the entire domain. In our case, this is achieved using a
technique known as elliptic grid generation (Thompson, Warsi & Mastin 1985). In
this formulation, elements in the physical domain are mapped to square elements via
the solution to a system of elliptic partial differential equations,

∇ · Dξ∇ξ = 0, (3.1)

∇ · Dη∇η = 0, (3.2)

where Dξ and Dη are adjustable parameters that allow for local grid refinement on
the interior of the physical domain.

The boundary of the computational domain and the drop interface is defined by
imposing Dirichlet boundary conditions on the above equations. In our formulation,
we arbitrarily specify curves of constant η to represent the boundary of the domain
and the surface of the drop, and let ξ measure the distance along each curve.
At the surface of the drop, the kinematic condition is imposed on the η equation
(3.2). For the ξ equation (3.1), we impose a Dirichlet condition which maintains an
efficient point distribution based on a weighted combination of the arc length and
the angle spanned by adjacent elements. For points sufficiently far from the drop,
grid generation is much less challenging, and we employ simple algebraic formulas to
determine the grid point locations (Thompson et al. 1985). A typical mesh generated
with the hybrid elliptic/algebraic grid algorithm is shown in figure 2.
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3.2. Galerkin finite element method

The Navier–Stokes (equation (2.1)), continuity (equation (2.2)) and grid generation
equations ((3.1) and (3.2)) are solved simultaneously with the Galerkin finite element
method (Gunzberger 1989). In our implementation, we approximate the velocity, the
pressure and the position vectors of the grid points as

u =

N∑
i=1

uiψi, (3.3)

P =

M∑
i=1

Piφi, (3.4)

x =

P∑
i=1

xiθi, (3.5)

where ψi, φi and θi are the basis functions ui, Pi and xi are the nodal values, and N,
M, and P are the number of equations, for velocity, pressure and grid point locations,
respectively. We use nine-node quadrilateral elements with biquadratic basis functions
to approximate velocities. We employ three linear basis functions for pressure, which
are discontinuous at element boundaries. This element pair is stable and satisfies
conservation of mass on each element (Gunzberger 1989).

The governing equations are solved simultaneously with the grid generation equa-
tions. To reduce the computational burden of solving this combined system, we
employ subparametric mapping. For elements that do not border the droplet, we use
bilinear basis functions for the geometry variables, and the solution to equations (3.1)
and (3.2) yields the position of the nodes on the corner of each element. The positions
of the interior points are determined using simple interpolation formulas given by
Christodoulou & Scriven (1992). We modify the elements which border the drop so
that three nodes represent the edge of the drop (Hughes 1987).

Grid generation is facilitated by solving the problem in a reference frame that moves
with the drop. The speed of the reference frame uref is unknown and is determined
by adding a constraint equation that requires the drop to remain at the origin of the
computational domain, or ∫

V

z dV =

∫
Sd

zπr2 dz

ds
ds = 0. (3.6)

For unsteady problems, an adjustment of the speed of the reference frame leads to
an accelerating reference frame, which is equivalent to a body force acting in the
negative z-direction with magnitude ρ∂uref/∂t. This quantity is subtracted from the
prescribed body force bz(t) to yield the force used in our implementation b′z(t):

b′z(t) = bz(t)− ρ∂uref
∂t

. (3.7)

Since the grid point locations are constantly updated in time, we must transform
the time derivatives in equation (2.1) at fixed locations in space to fixed isoparametric
locations. The following transformation is employed:

∂u

∂t
= u̇− ẋ · ∇u, (3.8)

where ẋ represents the mesh velocity (Christodoulou & Scriven 1992).
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Following Galerkin’s method, we form the weighted residuals of equations (2.1),
(2.2), (3.1), (3.2) and (3.6), integrate over the entire domain, and apply the divergence
theorem to yield the final form

RM
i =

∫
V

ψiek ·[ρ(u̇+ (u− ẋ) · ∇u)− b′]+σ:∇(ψiek) dV −
∫
S

ψiek · (σ ·n) dS = 0, (3.9)

RCj =

∫
V

φj∇ · u dV = 0, (3.10)

RG,ξl =

∫
V

∇θl · (Dξ∇ξ) dV −
∫
S

n · (Dξ∇ξ)θl dS = 0, (3.11)

RG,η
l =

∫
V

∇θl · (Dη∇η) dV −
∫
S

n · (Dη∇η)θl dS = 0 (3.12)

and

RP =

∫
Sd

zπr2 dz

ds
ds = 0. (3.13)

The superscripts M, C , G and P refer to the momentum, continuity, grid, and position
constraint equations respectively and ek is a unit vector in either the r- or z-direction.
We solve this system simultaneously to calculate the velocities and grid point location
of each node. The kinematic condition is imposed via Dirichlet boundary conditions
on the grid equations. For steady-state problems, we replace the kinematic condition
at one node on the surface of the drop with a constraint on the volume of the drop.

3.3. Steady-state solution

For convenience, we rewrite the above system of nonlinear algebraic equations as

Ri(xj) = 0, (3.14)

where Ri is a vector of residuals corresponding to the momentum, continuity and
grid equations and xj is a vector of unknowns corresponding to the nodal values
of velocity, pressure and grid point locations. This system is solved iteratively with
Newton’s method (Goodwin & Schowalter 1996)(

∂Ri

∂xj

)k
∆xk+1

j = −Rki , (3.15)

where the superscript k is the iteration number, ∆xj is the change in nodal values and
∂Ri/∂xj is the analytically evaluated Jacobian matrix. All integrals in this equation
are evaluated with three-point Gauss–Legendre quadrature (Carnahan, Luther &
Wilkes 1969), and the equations are solved with UMFPACK, a code that implements
a frontal method (Davis 1995).

As with other iterative techniques, Newton’s method requires an initial guess for
the velocity field. For steady-state problems, one efficient procedure is to obtain a
velocity field at a low forcing level, using u = 0 as the initial guess, and to apply
continuation in Fo. For our initial profile we employ strong surface tension so that
the shape of the droplet can be closely approximated by a sphere. In addition to
continuation in Fo, we have found that continuation in a/h is an effective means to
find solutions for drops that have a radius larger than the radius of the tube. With
these continuation methods, one may easily obtain solutions for desired values of
either the steady forcing level Fo or the capillary number Ca.
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Mesh Elements Unknowns Ca

∆P+h

γ

M1 68 988 3.1377× 10−4 0.043918
M2 208 2922 3.5615× 10−4 0.041206
M3 672 9034 3.5552× 10−4 0.041246
M4 1040 13851 3.5476× 10−4 0.041295

Table 1. Convergence data for Fo=0.008, λ = 1, ρD = 1, a/h = 1.1, φ = 0.2218, Re/Ca = 31.25.
For mesh M3, approximately 75 s per iteration were required.

Mesh Elements Unknowns Ca

∆P+h

γ

M1 68 988 0.0998652 0.375543
M2 208 2922 0.0998951 0.373626
M3 672 9034 0.10000466 0.366614
M4 1040 13851 0.10001167 0.366166

Table 2. Convergence data for Fo=0.845864, λ = 1, ρD = 1, a/h = 1.1, φ = 0.2218, Re/Ca = 0.

To test the accuracy of the above algorithm, we conducted convergence tests as
shown in tables 1 and 2 for two distinct forcing levels. For both forcing levels, Ca and
∆P+ each change by less than 0.25% between meshes M3 and M4. Therefore mesh
M3 (figure 2) provides sufficient accuracy and will be used for the remainder of this
paper. Furthermore, for higher forcing levels, we note that ∆P+ is more sensitive to
grid refinement than Ca, indicating that convergence in Ca is not sufficient to ensure
an accurate calculation of ∆P+. As an independent check of the results presented
in table 2, we performed the same calculation using a spectral boundary integral
technique (Muldowney & Higdon 1994). Excellent agreement was obtained, with the
Ca accurate to 0.01% and ∆P+ accurate to 0.25%. Comparison with the computations
of Martinez & Udell (1992) also shows good agreement with the predicted droplet
length and wall film thickness to within 2%. Those authors showed that their results
were consistent with the experiments of Olbricht & Kung (1992) with variations of 5%
and 8% in the droplet length and film thickness respectively. Additional comparisons
with relevant results from Bozzi et al. (1997) verified that finite Re effects are captured
correctly in the present computations.

3.4. Predictor-corrector scheme for unsteady flows

For unsteady problems, the introduction of the finite element approximations for
velocity and pressure leads to a system of nonlinear algebraic differential equations.
These equations must be integrated in time to obtain the velocity field and droplet
shape at every time step. We perform the integration with an explicit Adams–
Bashforth prediction, followed by an implicit trapezoidal rule correction, as described
by Gresho, Lee & Sani (1980). Following Gresho, we have implemented an adaptive
time-step scheme with a relative error tolerance of 0.001 between the predicted solution
and the corrected solution.

To begin the unsteady calculations, we first calculate the steady-state velocity
profile corresponding to a given steady forcing level. The overall time required for
the unsteady simulations can be reduced by selecting the initial profile to have a
deformation similar to the average value of the deformation expected. We perform
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a/h = 0.5

a/h = 0.9

a/h =1.1

Figure 3. Steady-state drop shapes for three different drop sizes at three different capillary numbers.
For each drop size, Ca = 5× 10−4, Ca = 0.01 and Ca = 0.05 are shown. Additional parameters are
λ = 1, ρD = 1, φ = 0.2218, Re/Ca = 31.25.

five time steps with a backward Euler method at a fixed time step, before switching
to the trapezoidal rule scheme with automatic time step selection. Using a backward-
difference method for the initial time steps avoids unwanted oscillations that can
potentially occur in the trapezoidal rule as a result of certain initial conditions
(Kheshgi & Scriven 1984). The above algorithm was tested by comparing results to
the analytical solution for oscillatory flow in a straight capillary tube.

4. Results: steady state
The steady flow behaviour of a droplet in a capillary tube is a function of the

drop size a/h, capillary number Ca, viscosity ratio λ, density ratio ρD , material
property number Re/Ca, and the droplet volume fraction φ. In this section we focus
on how the computed drop shapes and the pressure drop vary with drop size and
capillary number. In figure 3, we begin by presenting steady-state drop shapes for
three different drop sizes at three different capillary numbers. The smallest drops
(a/h = 0.5) show negligible deformation for the capillary numbers shown. As we
move to larger drop sizes (a/h = 0.9, 1.1), figures 3(b) and 3(c) show a progressive
increase in drop deformation with increasing capillary number. For drop sizes larger
than those shown here, additional computations show drop shapes consistent with
those for a/h = 1.1 with more elongation in the flow direction. These results are
consistent with the observations of Martinez & Udell (1990).

Next, we examine the pressure drop in the tube as a function of capillary number
and drop size. An important contribution to the total pressure drop is the extra
pressure change due to the droplet ∆P+. This quantity is closely related to the
capillary pressure encountered in reservoir modelling which characterizes the extra
flow resistance due to interfacial forces. In the present study, the pressure change ∆P+,
defined by equation (2.19), measures the total pressure effect of the droplet including
viscous and interfacial forces. It should be noted however that the interfacial forces
are dominant for capillary numbers of interest, and hence this quantity accurately
reflects the capillary pressure. In figure 4 we plot the ratio of ∆P+ to the total pressure
drop ∆P tot as a function of Ca. This figure shows that the magnitude of ∆P+ decreases
relative to ∆P tot as the capillary number increases, consistent with expectations for
decreasing surface tension. The pressure drop ∆P+ shows significant variation for the
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Figure 4. Extra pressure drop as a function of capillary number for λ = 1, ρD = 1, φ = 0.2218
and Re/Ca = 31.25.
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Figure 5. Permeability κ as a function of capillary number Ca for λ = 1, ρD = 1, φ = 0.2218
and Re/Ca = 31.25.

large drops a/h = 1.1, but much smaller variation for the smaller drop sizes. (Note
that the curve for a/h = 0.5 is nearly coincident with the horizontal axis.) For large
drops at low Ca, a thin lubrication layer forms between the droplet and the tube
wall, and the high shear stress in this layer increases ∆P+. As Ca increases, the drop
deforms and admits a larger volume of fluid into the lubrication layer. As a result, the
shear stresses are reduced and ∆P+ decreases relative to ∆P tot. The decrease in ∆P+

for drops with a/h = 1.1 leads to a significant increase in the overall permeability
κ as Ca increases (figure 5). For smaller drop sizes, the permeability is only a weak
function of Ca.

The thin lubrication layers which develop for large droplets at small capillary
numbers greatly increase the difficulty of the numerical computations. The gap
between the tube wall and the drop interface becomes much thinner, and the required
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Figure 6. Extra pressure drop ∆P+h/γ as a function of capillary number Ca for λ = 1, ρD = 1,
φ = 0.2218 and Re/Ca = 31.25. The circles represent calculated data points and the solid line is
asymptotic result with slope of 2/3.
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Figure 7. Relative drop velocity as a function of capillary number for drops with λ = 1, ρD = 1,
φ = 0.2218, Re/Ca = 31.25.

spatial resolution increases dramatically. As an alternative to numerical computations
at very low capillary numbers, we will utilize the asymptotic scaling results for ∆P+

as Ca → 0. Figure 6 presents a log-log plot of ∆P+ versus Ca, showing good
convergence to the asymptotic prediction ∆P+ ∼ Ca2/3 for viscous drops obtained by
Park & Homsy (1984). The numerical data in this figure provide the coefficient for
the Ca2/3 dependence and allow us to make quantitative predictions in the asymptotic
regime.

Turning our attention from the bulk flow rate to the drop speed, we plot the ratio
of the drop speed to bulk flow rate as a function of capillary number in figure 7.
Small drops travel at almost twice the bulk velocity owing to the nearly parabolic
velocity profile in the tube. By contrast, larger drops travel at nearly the same speed
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as the bulk fluid for low Ca, but show a marked velocity increase relative to the
bulk as Ca increases. This increase in speed is due to the increased deformation at
higher Ca, which allows the droplet to remain closer to the centre of the tube where
the local fluid velocities are greater. Note that the relative drop velocity is a direct
measure of the relative permeability of the two phases. (Recall that the permeability
is proportional to the velocity.) Thus an increase in (oil) droplet velocity represents
an increase in the relative permeability for the dispersed (oil) phase.

In summary, our steady-state results have shown that both the permeability κ and
the relative droplet velocity Udrop/Ubulk are strong functions of Ca, and hence have
strong dependence on the applied forcing level. As the forcing level increases, droplet
deformation increases, which causes ∆P+ to decrease and the permeability to increase.
The increased droplet deformation also leads to an increase in the relative droplet
velocity.

5. Quasi-steady analysis
Having characterized the flow of droplets in capillary tubes under steady flow

conditions, we turn our attention to the droplet motion under oscillatory forcing
conditions. In the presence of oscillatory forcing, both the droplet velocity and the
bulk fluid velocity are functions of time. For very small oscillatory frequencies,
the driving force changes sufficiently slowly that the droplet shape and the fluid
velocity profile are well approximated by their steady-state values evaluated at each
instantaneous forcing level. Under these conditions, the unsteady velocities can be
obtained from steady-state data as

U(t) = Uo(F)
∣∣
F=F(t)

, (5.1)

in which U(t) and Uo represent either the bulk fluid velocity or the droplet velocity
and Uo(F) is the steady-state velocity at a given forcing level F . The primary focus of
this section will be to use the quasi-steady approximation to calculate the mean flow
rate under a wide range of conditions. The mean flow is computed as

U =
1

τ

∫ τ

0

Uo(F(t)) dt, (5.2)

where the range of integration is over one period of oscillation.
This quasi-steady approximation is valid when the time scale of the applied forcing

τ is much larger than the other time scales in the problem. When a fluid droplet
is subject to deformation in a flow, surface tension acts to return the drop to an
undeformed state. The surface tension is opposed by the viscous resistance of the
fluid and by its inertia. Owing to these factors, there are two time scales associated
with the response of a droplet to changes in forcing level. These are the viscous
response time tv = µa/γ and the inertial response time ti =

√
ρa3/γ. The ratio of

these two time scales is simply ti/tv =
√
Re/Ca, so that we may interpret the material

property number Re/Ca as a measure of the inertial to viscous response time of
the droplet. For quasi-steady analysis, we require that tv/τ� 1 and ti/τ� 1. In
addition to the response time of the droplet, there is a characteristic time scale for
the suspending fluid, represented by the viscous diffusion time scale tµ = ρa2/µ. The
ratio tµ/τ must also be small.

In terms of dimensionless parameters, the three conditions tv/τ� 1, ti/τ� 1 and
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Figure 8. Flow rate as a function of oscillatory forcing for different drop sizes and Ca = 5× 10−4,
λ = 1, ρD = 1, φ = 0.2218, Re/Ca = 31.25 with sinusoidal forcing: (a) bulk fluid, (b) relative drop
velocity.

tµ/τ� 1 are given by the respective conditions

f � 1, f
√
Re/Ca� 1, f(Re/Ca)� 1. (5.3)

Obviously, when the first and third conditions are satisfied, the second will be
satisfied automatically. While the quasi-steady approximation is strictly valid only in
these asymptotic limits, we shall show that the trends observed here are qualitatively
similar to those for the full unsteady simulations over a wide range of frequencies.

In the following subsections, we consider sinusoidal forcing functions (g(t) =
sin(2πt/τ)/

√
2 in equation (2.4)) and examine the effects of oscillatory forcing on the

mean flow rate for different parameters over a wide range of geometric and fluid
properties. We then examine a different temporal forcing function in an effort to
optimize the changes in mean flow rate that arise with oscillatory forcing.

5.1. Drop size effects

We begin our investigation by studying droplets of different sizes a/h relative to the
radius of the capillary tube. Recall that we consider the motion of a droplet subject
to a steady force Fo and a sinusoidal force with root-mean-square value Frms. In figure
8, we present the enhancement in flow rate as a function of oscillatory forcing for
different drop sizes. For the quasi-steady regime, recall that the flow behaviour of
the oscillatory system may be predicted from the data for steady-state solutions. The
relevant data we require are those for permeability from figure 5. In that figure, we saw
that the permeability for small droplets a/h 6 0.9 is essentially constant, independent
of Ca (or forcing level). The bulk velocity at any instant in the oscillatory flow is
equal to the product of the instantaneous forcing level and the permeability for that
forcing level. When the permeability is constant, the effect of the oscillatory pressure
averages to zero and there is no enhancement. This is reflected in the curve for small
droplets (a/h 6 0.9) in figure 8. For larger droplets, figure 5 showed a dramatic
increase in permeability with increasing Ca or (forcing level Fo). When the oscillatory
pressure is positive, acting with the mean pressure gradient, the total forcing level is
higher, leading to greater permeability and a nonlinear increase in velocity. When the
oscillatory force is negative, the overall force is lower leading to lower permeability
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λ = 1, ρD = 1, φ = 0.2218, Re/Ca = 31.25 with sinusoidal forcing: (a) bulk fluid, (b) relative drop
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and a nonlinear reduction in the velocity. The net result of the nonlinearity is a
positive contribution to the time-average velocity over the period of the oscillatory
force cycle. The effect of this permeability-induced nonlinearity is seen in the curves
for large droplets a/h > 1.1 in figure 8 which show a strong enhancement in the
overall flow rate. Given the similarity between the results for drops with a/h = 1.3
and a/h = 1.1, we infer that a/h = 1.1 accurately reflects the asymptotic behaviour for
long drops. Therefore, for subsequent results, we will focus on drops with a/h = 1.1.

5.2. Capillary number effects

Next, we consider the effect of surface tension on the enhancement of the flow rate. In
particular, we consider droplets with different capillary numbers, where the capillary
number is based on the bulk flow rate in the absence of oscillatory forcing. In figure
9(a), we show the effect of oscillatory forcing on the bulk fluid flow rate for three
different steady-state capillary numbers and for the low-capillary-number asymptotic
limit. In the small-Ca limit, the total pressure drop is essentially equal to ∆P+, and
therefore we assume that F s Ca2/3 throughout the forcing cycles for the Ca → 0
curve. As the steady capillary number in the base flow increases, the enhancement in
mean flow rate achieved by the acoustic forcing decreases. For these higher capillary
numbers, ∆P+ decreases relative to the total pressure drop, and therefore the reduction
in ∆P+ due to the oscillatory forcing has less effect on the overall flow rate.

Turning our attention from the bulk fluid flow rate to the droplet velocity, we
plot the ratio of drop velocity to bulk velocity as a function of oscillatory forcing in
figure 9(b). Here, we observe that the relative drop speed increases with the level of
oscillatory forcing, but that the speed increase is less pronounced for lower capillary
numbers. For these low capillary numbers, the drop deformation is smaller, and
therefore the velocity of these large droplets remains closer to the bulk velocity.

5.3. Reynolds number effects

The Reynolds numbers for the computations presented to this point have been
in the range where inertial effects are negligible (Reo = 0.0156). While this is the
most appropriate range for oil recovery processes, we examine results for higher
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Re to determine when inertial effects become important. In figure 10, we show the
enhancement in flow rate as a function of oscillatory forcing for three values of Re/Ca.
An order of magnitude increase in Re/Ca from 31.25 to 312.5 gives an insignificant
change in the flow enhancement, and further increases in Re/Ca reveal that inertial
effects become significant only when the instantaneous Re reaches about 50.

5.4. Additional parameters

In addition to the parameters considered above, the enhancement in flow rate is a
function of the droplet volume fraction, viscosity ratio and density ratio. Detailed
results concerning the effects of these parameters are presented in Graham (1999).
Briefly, we note that the enhancement effects increase monotonically with increasing
volume fraction. This is to be expected as the greater number of droplets per unit
volume increases the droplet contribution to the total pressure drop. Results for
viscosity ratios ranging from λ = 0.1 to λ = 10 are qualitatively similar to those for
λ = 1. The effect of increasing the density ratio ρD is a monotonic increase in the
enhancement factor. This is consistent with the increased body force on the droplet
which is proportional to its density. Note that we did not investigate effects associated
with gravity forces acting perpendicular to the axis of the tube. For large density
differences, such forces might lead to non-axisymmetric configurations with significant
changes in the flow resistance.

5.5. Temporal waveform

In an effort to optimize the enhancement of the mean flow rate, we investigate the
application of non-sinusoidal temporal waveforms. During sinusoidal forcing, the
relatively high instantaneous fluid velocities lead to increased droplet deformation
and decreased flow resistance. This decrease in resistance is advantageous during the
portion of the forcing cycle in which the mean and oscillatory forcing tend to push
fluid in the same direction. However, the flow resistance is also smaller when the
oscillatory forcing reverses, which tends to decrease the total enhancement over the
cycle. One way to optimize the enhancement is to use non-sinusoidal waveforms.
In our previous work (Graham 1997), we considered a variety of temporal forcing



Oscillatory flow of droplets. Part 1 47

ts
Fo

rc
e

Time

Figure 11. Spike waveform. The spike intervals are sine functions with a period one-fourth the
overall period (ts/τ = 0.25).

0

Frms

0.10

0.08

0.06

0.04

0.02

0.1 0.2 0.3 0.4

Udrop

Ubulk

Frms

3.0

2.5

2.0

1.5

1.0
0.1 0.2 0.3 0.40

(b)(a)

Ca

Figure 12. Flow rate and drop speed for spike waveform with zero mean forcing and a/h = 1.1,
Re/Ca = 31.25, φ = 0.2218, λ = 1, ρD = 1: (a) bulk fluid, (b) relative drop velocity.

functions, including waveforms consisting of two Fourier modes or a spike wave. A
typical spike waveform is shown in figure 11 and given by

3Fω/4 + Fω sin(8πt/τ+ 3π/2) for t < τ/4

−Fω/4 for τ/4 > t < τ

}
(5.4)

Forcing in the positive direction consists of brief periods of strong forcing, whereas
the negative portion of the forcing cycle consists of long periods of relatively weak
forcing. During the portion of the cycle where the forcing is strong, the drop undergoes
significant deformation and thus less flow resistance. In contrast, for the part of the
cycle where the forcing is not as strong, the droplet deforms less, and therefore
encounters more flow resistance. When we average over one cycle, the net result
is that a mean flow is induced in the positive direction. In figure 12(a) we plot
the average flow rate (reported as a capillary number) for the spike waveform as
a function of the oscillatory forcing level in the absence of mean forcing. In figure
12(b) we show the ratio of drop speed to bulk velocity as a function of the oscillatory
forcing level. We note that the purely oscillatory spike waveform induces a non-zero
mean velocity, and that the ratio of drop velocity to bulk fluid velocity increases with
oscillatory forcing.

Given that the spike waveform can induce a mean flow, we consider how the
coupling of this waveform to a mean force affects the mean flow rate. Figure 13
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Figure 13. Quasi-steady analysis for spike waveform with mean forcing and a/h = 1.1,
Ca = 5× 10−4, Re/Ca = 31.25, φ = 0.2218, λ = 1, ρD = 1. The dotted line represents the enhance-
ment of the drop (ratio of average drop speed to drop speed without oscillatory forcing) and the
solid line represents the enhancement of the bulk fluid phase (UE).

shows the enhancement achieved for both the drop velocity (dotted line) and the bulk
fluid (solid line) as a function of oscillatory forcing. In this figure, on the horizontal
axis, a positive oscillatory force means that the oscillatory forcing and the mean
force act to drive fluid in the same direction, whereas negative forcing means that
the oscillatory component and the mean component tend to push fluid in opposite
directions. For positive forcing, one sees that the acoustic forcing produces a dramatic
enhancement in the mean flow rate. In contrast, negative forcing reduces the mean
flow rate and may reverse the flow direction in the case of sufficiently strong forcing.

6. Unsteady flow
In the previous section we showed that quasi-steady analysis predicts a dramatic

effect on the mean flow rates arising in the presence of oscillatory forcing. The quasi-
steady analysis is valid for low forcing frequencies satisfying the conditions f � 1 and
f (Re/Ca)� 1. In this section, we explore the range of frequencies over which quasi-
steady predictions give reasonable approximations to the flow behaviour. We begin
by examining the drop profiles in the tube and show how they are affected by the
frequency of oscillation. We consider a typical flow example with sinusoidal forcing of
magnitude Frms/Fo = 20. Figures 14(a) and 15(a) show a droplet under quasi-steady
flow conditions with the drop profiles showing different degrees of deformation.
The small-deformation profile (figure 14a) illustrates the droplet in the absence of
oscillatory forcing. The large-deformation profile (figure 15a) illustrates the maximum
deformation arising in response to the oscillatory forcing. Recall that the large
deformation seen in figure 15(a) is responsible for the lower resistance and enhanced
flow rates associated with oscillatory forcing. When the frequency of oscillation
departs from the quasi-steady limit (f = 0.0088), the drops experience some changes
in deformation as shown in figures 14(b) and 15(b). Here the maximum deformation
is similar to the quasi-steady limit, but the minimum deformation is greater. The
oscillatory forcing produces drop elongation in the flow direction, and the droplet
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Figure 14. Drop shapes for Ca = 5×10−4, λ = 1, ρD = 1, φ = 0.2218, Re/Ca = 31.25 corresponding
to: (a) absence of oscillatory forcing, (b) the minimum deformation for Frms/Fo = 20 and f = 0.0088,
(c) Frms/Fo = 20 and f = 0.03168.

(a)
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(c)

Figure 15. Drop shapes corresponding to the maximum deformation for Ca = 5× 10−4, λ = 1,
ρD = 1, φ = 0.2218, Re/Ca = 31.25, Frms/Fo = 20: (a) quasi-steady, (b) f = 0.0088, (c) f = 0.03168.

never has sufficient time to return to the less deformed state corresponding to the
lowest forcing levels in the cycle. When the oscillation frequency reaches a sufficiently
high value (f = 0.03168), the time scale for the oscillation is small enough that the
droplet has insufficient time to respond to the forcing. The maximum-deformation
profile shown in figure 15(c) shows only a minor departure from that for minimum
deformation in figure 14(c). Each of these profiles resembles the small-deformation
profile in the quasi-steady case which shows the base profile in the absence of
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Figure 17. Enhancement vs. frequency for a/h = 1.1, Ca = 5× 10−4, φ = 0.2218, λ = 1, ρD = 1
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oscillatory forcing. As the deformation disappears at high frequencies, the associated
flow enhancement vanishes as well.

Figure 16 shows the flow enhancement as a function of frequency for three different
property numbers Re/Ca. In each case, the enhancement decreases monotonically with
increasing frequency. For small Re/Ca, the decay in enhancement occurs because the
droplet has insufficient time to respond to the oscillatory forcing. As the property
number increases however, the fall-off in enhancement shifts to lower frequencies. This
shift is associated with the inertial response of the fluid. For low Re, the fluid responds
immediately to an imposed force; however, for finite Re, the fluid responds more slowly
owing to acceleration effects. Therefore, for the non-zero property numbers shown in
figure 16, the enhancement in flow rate is limited by both the response time of the
droplet and the response time of the bulk fluid. In figure 17, we show the flow rate as
a function of frequency for two different oscillatory forcing levels. For both forcing
levels, the flow rate decays with increasing frequency; however, the enhancement for
the stronger forcing level persists at higher frequencies. For the larger forcing levels,
less time is required to deform the droplet, and therefore flow enhancement remains
significant for higher frequencies.
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Figure 19. Effect of frequency on bulk fluid flow rate for spike wave and a/h = 1.1,
Ca = 5× 10−4, Re/Ca = 31.25, φ = 0.2218, λ = 1, ρD = 1.

In figures 18(a) and 18(b), we compare the predictions of quasi-steady analysis
with the unsteady simulations, plotting enhancement and drop speed as a function of
forcing level for a frequency of f = 0.0088. The qualitative trends are the same for the
quasi-steady analysis and the unsteady simulations; however there is a measurable
fall-off in the magnitudes for the unsteady case. We conclude that the quasi-steady
model predicts the character of the flow modification quite well over a wide range of
conditions, but that attenuation at high frequency must be anticipated with figures
16 and 17 serving as a guide to the high-frequency decay.

We now move from unsteady flows driven by sinusoidal waveforms to those driven
by spike waveforms. Recall that quasi-steady analysis shows that the spike wave can
either increase or decrease the bulk flow rate, depending on the orientation of the
forcing waveform (figure 13). Figure 19 shows the flow rate as a function of frequency
for two oscillatory forcing levels with opposite orientation. For positive oscillatory
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forcing, the spike portion of the wave advances the fluid in the same direction as
the mean. The increase in flow rate predicted by quasi-steady analysis is due to the
large deformation occurring during this portion of the cycle. At higher frequencies,
less deformation occurs, and therefore the mean flow rate decreases. For negative
oscillatory forcing, quasi-steady theory predicts a mean flow in the direction opposite
to the sense of the mean pressure gradient. This flow reversal occurs because the
spike portion of the wave acts in the negative direction, yielding significant droplet
deformation and reduced flow resistance for the backflow part of the cycle. As the
frequency increases, less deformation occurs, and the oscillatory forcing has less effect
on the mean flow rate. For the highest frequency shown, the spike portion of the wave
occurs over a short enough period that the deformation change is insignificant. The
slight increase in mean flow show in figure 19 is due to a small increase in deformation
that occurs during the plateau portion of the wave. In the high-frequency asymptotic
limit, the curves for both positive and negative forcing will return to the base level
with no enhancement (UE = 1).

7. Conclusions
We have shown that droplet deformation in response to an applied oscillatory force

can lead to dramatic increases in mean flow rate for flow in straight capillary tubes.
For multiphase flow in porous media, these same phenomena might lead to increased
efficiency by increasing both the overall permeability of the porous media as well as
the speed of the droplet phase relative to the bulk flow. The greatest enhancement
is observed when strong acoustic stimulation is delivered at low frequency with large
droplets and strong surface tension.

The flow enhancement observed in this study is attributable to the deformation
of the fluid droplets leading to reduced flow resistance. On a macroscopic scale,
this phenomenon may be characterized by viewing the suspension of droplets as an
effective fluid with shear-thinning behaviour. Given the basic principles underlying
the enhancement mechanism, we note that any fluid with similar rheological character
would realize similar flow enhancement in the presence of an oscillatory driving force.
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